Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Modeling Arctic-Boreal vegetation is a challenging but important task, since this highly dynamic ecosystem is undergoing rapid and substantial environmental change. In this work, we synthesized information on 18 dynamic vegetation models (DVMs) that can be used to project vegetation structure, composition, and function in North American Arctic-Boreal ecosystems. We reviewed the ecosystem properties and scaling assumptions these models make, reviewed their applications from the scholarly literature, and conducted a survey of expert opinion to determine which processes are important but lacking in DVMs. We then grouped the models into four categories (specific intention models, forest species models, cohort models, and carbon tracking models) using cluster analysis to highlight similarities among the models. Our application review identified 48 papers that addressed vegetation dynamics either directly (22) or indirectly (26). The expert survey results indicated a large desire for increased representation of active layer depth and permafrost in future model development. Ultimately, this paper serves as a summary of DVM development and application in Arctic-Boreal environments and can be used as a guide for potential model users, thereby prioritizing options for model development.more » « less
-
WetCH 4 : a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022Abstract. Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands (>45° N), accounting for 42 % of global wetland area, are increasingly vulnerable to carbon loss, especially as CH4 emissions may accelerate under intensified high-latitude warming. However, the magnitude and spatial patterns of high-latitude CH4 emissions remain relatively uncertain. Here, we present estimates of daily CH4 fluxes obtained using a new machine learning-based wetland CH4 upscaling framework (WetCH4) that combines the most complete database of eddy-covariance (EC) observations available to date with satellite remote-sensing-informed observations of environmental conditions at 10 km resolution. The most important predictor variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, and soil moisture. Our results, modeled from 138 site years across 26 sites, had relatively strong predictive skill, with a mean R2 of 0.51 and 0.70 and a mean absolute error (MAE) of 30 and 27 nmol m−2 s−1 for daily and monthly fluxes, respectively. Based on the model results, we estimated an annual average of 22.8±2.4 Tg CH4 yr−1 for the northern wetland region (2016–2022), and total budgets ranged from 15.7 to 51.6 Tg CH4 yr−1, depending on wetland map extents. Although 88 % of the estimated CH4 budget occurred during the May–October period, a considerable amount (2.6±0.3 Tg CH4) occurred during winter. Regionally, the Western Siberian wetlands accounted for a majority (51 %) of the interannual variation in domain CH4 emissions. Overall, our results provide valuable new high-spatiotemporal-resolution information on the wetland emissions in the high-latitude carbon cycle. However, many key uncertainties remain, including those driven by wetland extent maps and soil moisture products and the incomplete spatial and temporal representativeness in the existing CH4 flux database; e.g., only 23 % of the sites operate outside of summer months, and flux towers do not exist or are greatly limited in many wetland regions. These uncertainties will need to be addressed by the science community to remove the bottlenecks currently limiting progress in CH4 detection and monitoring. The dataset can be found at https://doi.org/10.5281/zenodo.10802153 (Ying et al., 2024).more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.more » « less
An official website of the United States government
